

LASERS AU BLOC OPERATOIRE

ALIBODE 2013

Mr MAZALAIGUE / Responsable service Technique Collin

Bref historique

1917	Décrit par Albert Einstein
1950	Procédé de pompage optique Alfred Kastler (Prix Nobel 1966)
1952	Mise au point expérimentale du procédé de pompage Kastler/Brossel/Winter
1953	MASER au gaz d'ammoniac Gordon/Zeiger/Townes
1960	Laser au Rubis (Maiman) / uranium et samarium
1961	Laser Hélium néon (Javan) / terres rares
1962	Laser semi-conducteur
1964	Prix Nobel pour l'Amplification du Maser Bassov/Prokhorov/Townes
	Laser CO2/ Argon
1965	Perçage de diamant avec un laser Rubis
1966	Laser liquide (Sorokin)
1967	Perçage acier en milieu industriel
1974	Lecteur disque optique
1982	Lecteur CD

Applications Générales

Physique appliquée Bordeaux

Industrie
Découpe / soudure

Industrie Métrologie

Industrie Construction

Sciences Fiction

Divertissement
Lecteur DVD / animation

Présentation


Sans commentaires

Applications médicales

- Esthétique
- Dermatologie
- Gynécologie
- ORL
- Ophtalmologique
- Urologie

• ...

CLASSE IV

Définition

Que veut dire le mot LASER?

Lumière Amplifiée par Emission de Rayonnements Stimulés

Qu'est-ce qu'un LASER?

Un Laser est un appareil qui est capable de condenser un faisceau d'énergie ayant comme particularité de ne posséder qu'une seule longueur d'onde (monochromatique)

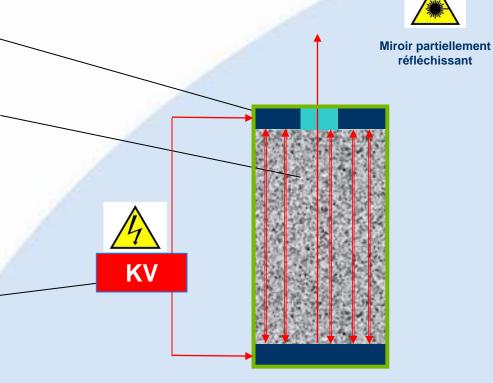
Composition d'un Laser

UN LASER SE COMPOSE DE 3 ELEMENTS PRINCIPAUX:

1 - La cavité résonnante

(Génération du signal laser)

2 - Le moyen actif


(Elément dans lequel se produit l'amplification)

- Solide
- Gaz
- Semi-conducteur
- Liquide
- Chimique

3 - Le système de pompage

(Fournit l'énergie au moyen actif)

- Electrique (électricité, Radiofréquence)
- Thermique (gaz-dynamique)
- Chimique (acide)
- Optique / semi-conducteur
- Electrons libres (Accélérateur de particules)

Miroir complètement réfléchissant

Fonctionnement Laser

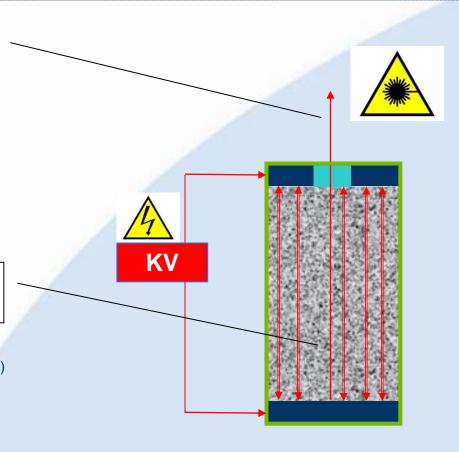
Cliquez pour voir le film

Définition

1 - Faisceau LASER

Particularité 1

Une seule longueur d'onde = f (Moyen actif)

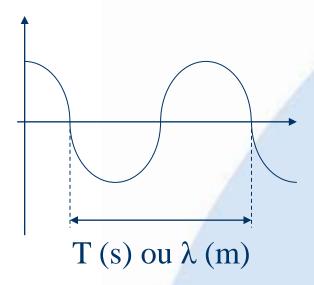

2 - Le moyen actif

(Elément dans lequel se produit l'amplification)

Solide (KTP, néodyme)

Gaz (CO2, Hélium Néon)

Semi-conducteur (Diode)



Définition

Qu'est-ce qu'une longueur d'onde?

La longueur d'onde est une grandeur physique qui caractérise un signal périodique. C'est la distance parcourue par l'onde en 1 période.

$$f = 1/T = V/\lambda$$

$$\lambda = c/f = cT = c/V$$

f = Hertz

 $c = 3.10^{+8} \text{ m/s}$

T: seconde

V : fréquence

 $\lambda: m$

Définition

1 - Faisceau LASER

Particularité 1

Une seule longueur d'onde

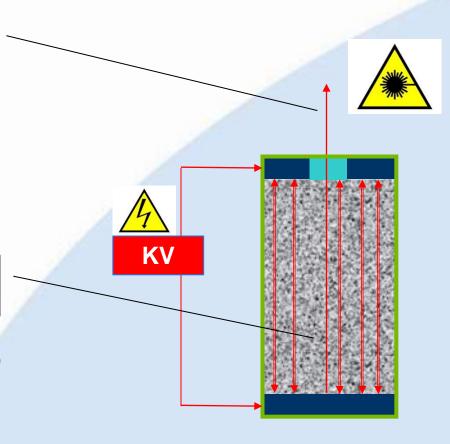
Particularité 2

Longueur d'onde = Visible ou invisible

2 - Le moyen actif

(Elément dans lequel se produit l'amplification)

Solide

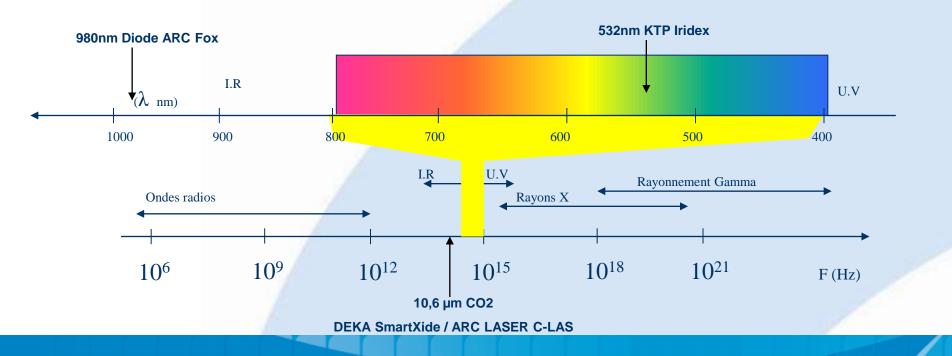

(KTP, néodyme)

Gaz

(CO2, Helium Néon)

Semi-conducteur

(Diode)



Définition

UN LASER = UN MOYEN ACTIF = UNE LONGUEUR D'ONDE

La longueur d'onde est la caractéristique même d'un laser. Suivant sa valeur, le faisceau est soit visible, soit invisible.

Définition

1 - Faisceau LASER

Particularité 1

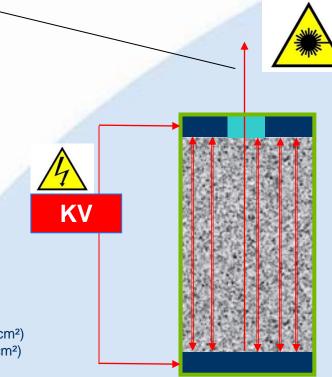
Une seule longueur d'onde

Particularité 2

Longueur d'onde = Visible ou invisible

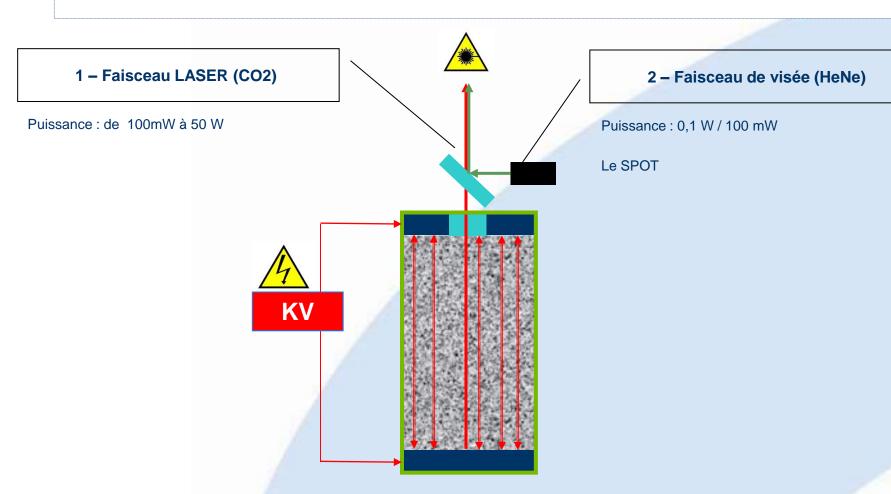
Particularité 3

Caractéristiques (dépendant de l'électronique du système) :


PUISSANCE = Watt (W) 0.1 - 50 W

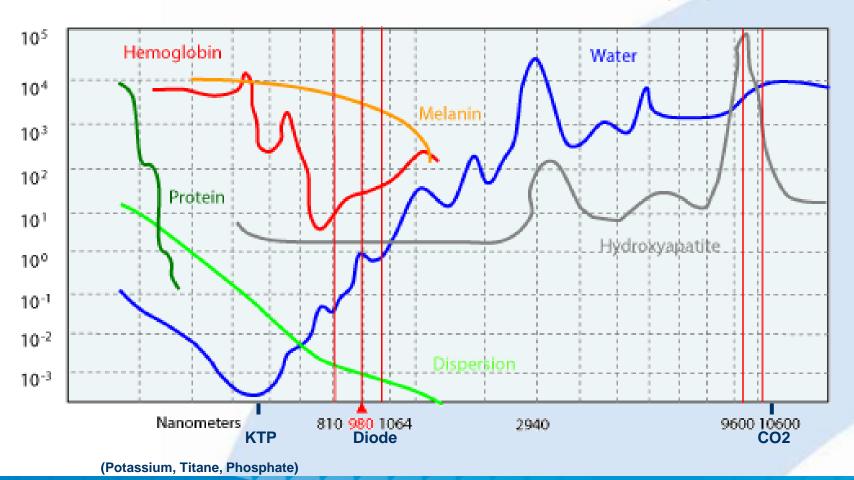
ENERGIE = Puissance x Temps Joules (J)

INTENSITE = Puissance par unité de surface Watt/cm² (W/cm²) FLUENCE = Energie par unité de surface Joule/cm² (J/cm²)

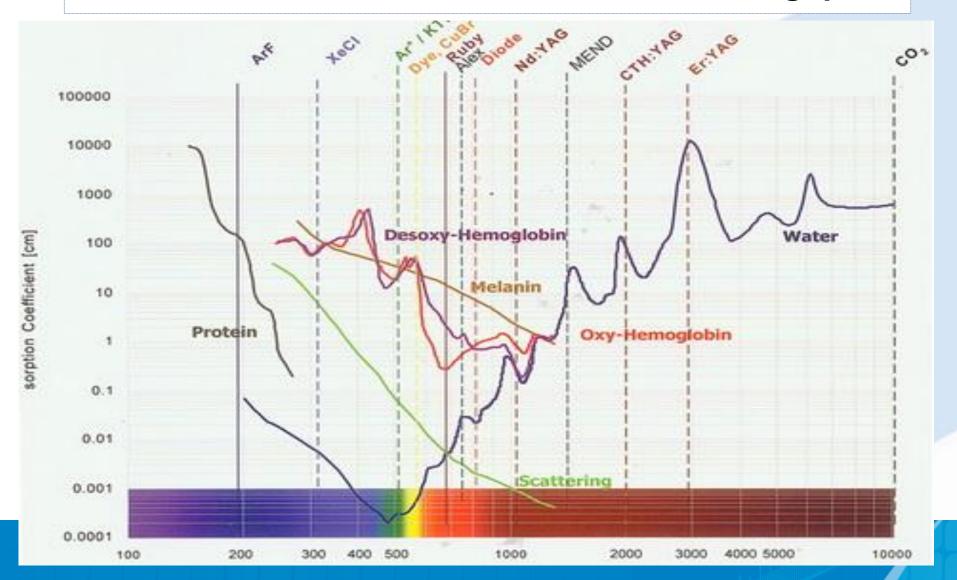

Spot size = Taille du spot ($\emptyset \mu m$) 200 – 250 μm

Mode = Continu / Pulsé / Super Pulsé

Définition

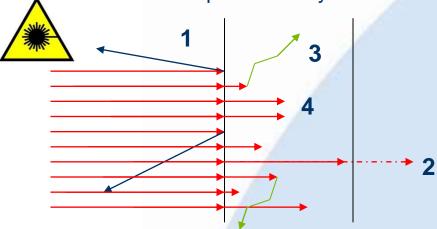

LASER et TISSUS

Pourquoi un laser peut être dédié à une ou des applications et peut ne pas être compatible pour d'autres ?


Laser vs Tissus biologiques

INTERACTION / PROPRIETES OPTIQUES DES TISSUS = $f(\lambda)$

Laser vs Tissus biologiques



Laser vs Tissus biologiques

INTERACTION LASER MATIERE

Quand un rayon laser rentre en action avec une matière (couche tissulaire, autre,...), on peut observer 4 types d'interaction :

- 1. Réflexion de la part de la lumière incidente
- 2. Transmission à travers le tissu d'une fraction de la radiation pénétrée
- 3. Diffusion de quelques photons vers l'intérieur ainsi que vers la surface
- 4. Absorption des rayons restants

L'effet recherché en médical est l'absorption

Laser vs Tissus biologiques

Exemple Pratique: L'EPILATION

Epilation sur peau foncée ou claire => différent milieu d'absorption => λ

Nd:Yag: neodymium-doped yttrium aluminium garnet ou grenat d'yttriumaluminium dopé au néodyme (λ =1064 nm)

Alexandrite: Laser au chrysobéryl (alexandrite¹⁷) dopé au chrome (λ =700-820 nm)

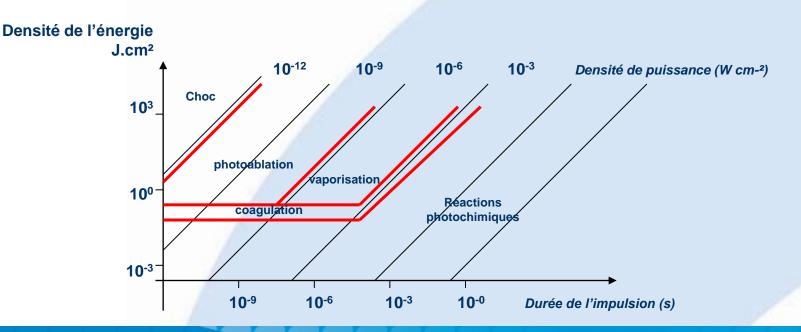
Peaux mattes ou noires = Nd:Yag.

Les longueurs d'onde de l'énergie **laser** sont absorbées plutôt dans les rouges, et la conduction se fait par les vaisseaux sanguins qui entourent la base du poil.

Peaux claires = Alexandrite

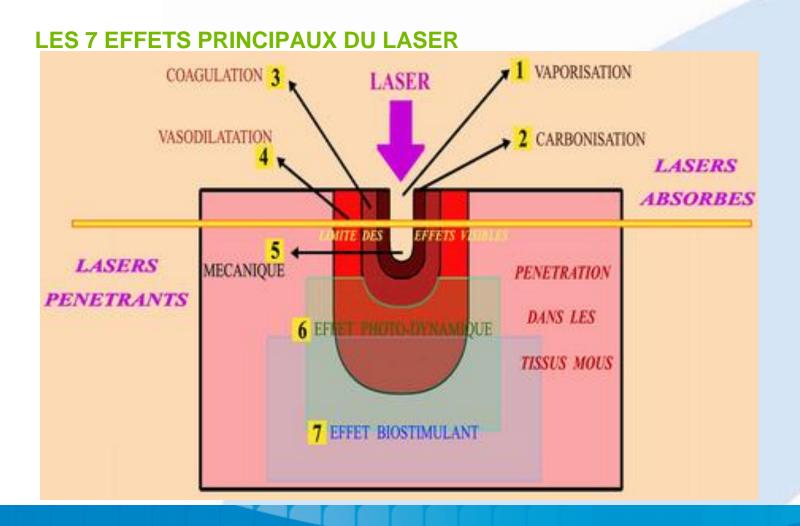
Poil plutôt foncé et épais. La technique est contre-indiquée sur une peau bronzée.

Laser vs Tissus biologiques


INTERACTION / EFFET SUR LES TISSUS

I. Interaction PHOTOCHIMIQUES: Modification des molécules

2. Interaction PHOTOTHERMIQUES: Chaleur


3. Interactions PHOTOMECANIQUES: Onde de choc

4. PHOTODECOMPOSITION: Photoablation et photofragmentation

Laser vs Effets

Sécurité

ASPECT NORMATIF autour du LASER

QUALITE / NORME

RAPPEL / Normes / sécurités / Qualité

SOCIETE A

ISO 9001: 2000 Dir. 93/42/CE

LASER CE

NF - EN 60825

NF - EN 60601

UTILISATEUR

ISO 9001: 2000

NF - EN 60825

LASER RADIATION

Signalétique Sécurité matérielle Visite médicale Formation

G-MED /

LCIE / TÜV

PATIENT

NF-EN 60825

La norme appliquée en Europe est la norme européenne NF EN 60825-1/A2 « sécurité des appareils à laser, classification des matériels, prescription et guide de l'utilisateur ». Cette norme est à la base des programmes de mise en application de la sécurité laser en industrie, médecine et en recherche. Elle est référencée en France par les Ministères du Travail, de la Santé et les Caisses Primaires d'Assurance Maladie.

La norme NF EN 60825-1/A2 pour la sécurité des appareils à laser fournit des informations sur le classement des lasers pour la sécurité, les calculs de sécurité laser, les mesures de contrôle des risques, des recommandations pour les responsables sécurité laser et pour les comités d'hygiène et sécurité des entreprises. Ces normes sont conçues pour fournir à l'utilisateur laser les informations demandées et aider à la compréhension des programmes de sécurité laser.

Pour les fabricants de produits laser, la norme sert de référence pour la conformité des installations. Tous les produits laser vendus en Europe doivent répondre à cette norme et comporter le **marquage CE**.

http://optique-ingenieur.org/fr/cours/OPI fr M01 C02/co/Contenu 08.html

Sécurité

Et la sécurité autour du LASER!

Sécurité

CLASSE IV

QUALITE / NORME /CLASSE

- Classe 1 : lasers sans danger, (exemples : <u>imprimantes</u>, lecteurs de CD,...).
- Classe 1M : lasers dont la vision directe dans le faisceau, notamment à l'aide d'instrument optiques, peut être dangereuse.
- Classe 2 : lasers qui émettent un rayonnement visible dans la gamme de longueur de 400 à 700 nm. La protection de l'œil est normalement assurée par les réflexes de défense comprenant le réflexe palpébral, clignement de la paupière (par exemple, des lecteurs de code-barres).
- Classe 2M : lasers qui émettent un rayonnement visible dans la gamme de longueur de 400 à 700 nm. Lasers dont la vision directe dans le faisceau, notamment à l'aide d'instrument optiques, peut être dangereuse (exemples : <u>loupes</u> et <u>télescopes</u>).
- Classe 3A : lasers dont l'exposition directe dépasse l'EMP (Exposition Maximale Permise) pour l'œil, mais dont le niveau d'émission est limité à cinq fois la LEA (Limite d'Émission Accessible) des classes 1 et 2.
- Classe 3B : laser dont la vision directe du faisceau est toujours dangereuse. La vision de réflexions diffuses est normalement sans danger.
- Classe 4 : lasers qui sont aussi capables de produire des réflexions diffuses dangereuses. Ils peuvent causer des dommages sur la peau et peuvent également constituer un danger d'incendie. Leur utilisation requiert des précautions extrêmes.

QUALITE / NORME / CLASSE

COMPLEMENT!!!

Les classes ont été déterminées en fonction des lésions que peut provoquer un laser, elles varient en fonction de la fréquence du laser, le laser infrarouge (IR) et ultraviolet (UV) étant bien plus dangereux que le laser visible. Dans le domaine visible, pour un laser continu, les classes sont :

– Classe 1 : jusqu'à 0,39 μW.

Classe 2 : de 0,39 μW à 1 mW.

Classe 3A: de 1 à 5 mW.

Classe 3B : de 5 à 500 mW.

Classe 4 : au-delà de 500 mW.

Pour résumer MEDICAL = CLASSE IV

QUALITE / NORME / CLASSE

Sécurité

Et la sécurité autour du LASER!

Qui protéger et comment ?

Sécurité

Qui protéger ?

- 1. Le patient
- 2. L'opérateur
- 3. Les personnes autour de l'opérateur
- 4. Les personnes extérieures

Sécurité

Comment protéger : le patient

- Protection oculaire
- Sonde d'intubation blindée
- 3. Packing « humide » de protection
- 4. Arrêt de l'oxygène pendant les tirs
- 5. Instrumentations anti-reflets
- 6. Explications au patient

Sécurité

Comment protéger : L'opérateur

1. Filtre sur microscope / Lunettes (attention à λ)

Sécurité

Comment protéger : L'opérateur

- 1. Filtre sur microscope / Lunettes
- 2. Instrumentations anti-reflets

Sécurité

Comment protéger : L'opérateur

- 1. Filtre sur microscope / Lunettes
- 2. Instrumentations anti-reflets
- 3. Signal sur l'appareil
- 4. Formation

Sécurité

Comment protéger : Personnel autour de l'opérateur

- 1. Filtre micro / lunettes pour l'aide opératoire
- 2. Lunettes
- 3. Instrumentation anti-reflets
- 4. Signal sur l'appareil
- Formation

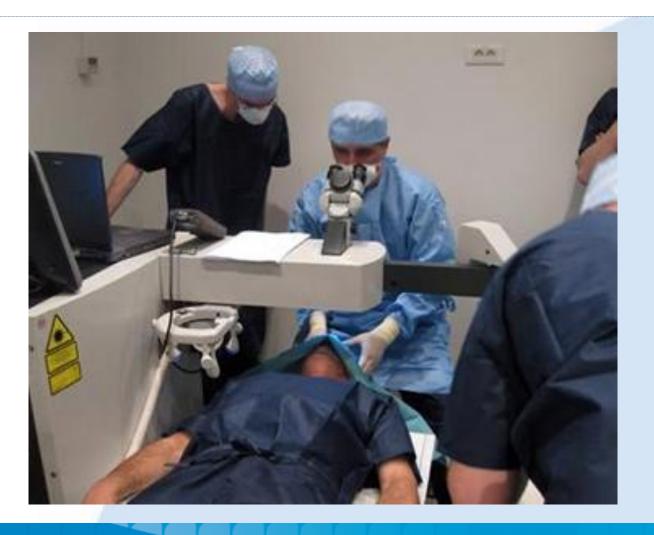
Sécurité

Comment protéger : Personnel extérieur

- 1. Signalétique sur la porte
- Système SMART Key sur la porte relié au laser (ouverture = blocage du laser!)
- 3. Vitres spéciales!

Situations Bloc opératoire

Exemples de situation


CO2 LARYNX

OPHTALMOLOGIE

PROSTATE

MERCI

MAZALAIGUE STEPHANE

06 30 48 86 53 smazalaigue@collinmedical.fr

3, rue de Robinson - 92227 Bagneux Cedex Tél. : + 33 1 49 08 08 88 Fax : + 33 1 49 08 08 89 info@collinmedical.fr